INVISIBILITY CLOAK

Posted by Dave Enoch On May - 02 - 2009

Would'nt that be amazing to be invisible. The scientists have kept a step forward and made a cloak which is called an invisibility cloak which neither absorbs nor reflects light making the body invisible. This can lead to invisible suits which are going to be available in the market but may be expensive at the start.

FIRST PLASMA TRANSISTOR

Posted by Dave Enoch On May - 02 - 2009

Scientists finally fabricate the first plasma transistor.Though this is not good enough to be used in the commercial systems but this has made a path to use them in future.
In the plasma transistor, the electron emitter injects electrons in a controlled manner into the sheath of a partially ionized neon gas (the plasma). The scientists discovered that even a voltage as low as 5 volts can change the properties of the microplasma, including quadrupling the current and increasing the visible light emission.

500GB Optical Disc

Posted by David On May - 02 - 2009

The storage capacity of micro-holographic discs that the normal DVDs or the blue-ray discs because the micro-holographic discs store information in a 3D way rather than just putting it onto the surface of the disc.
G.E(General Electrics) has made dramatic changes in the material to increase the reflectivity of the surface.If the reflectivity of the surface increases then the amount of information that can stored automatically increases.

NANO-CLOTH NEVER GETS WET

Posted by David On May - 02 - 2009

If you were to soak even your best raincoat underwater for two months it would be wet through at the end of the experience. But a new waterproof material developed by Swiss chemists would be as dry as the day it went in.
Lead researcher Stefan Seeger at the University of Zurich says the fabric, made from polyester fibres coated with millions of tiny silicone filaments, is the most water-repellent clothing-appropriate material ever created.

POST-TITLE-HERE

Posted by POST-AUTHOR-HERE On Month - Day - Year

POST-SUMMARY-HERE

SUPERCONDUCTIVITY IN AN INSULATOR

Posted by gamer On 2:02 AM
To continue to improve semiconductor devices, such as transistors, which form the backbone of the consumer electronics industry, researchers need to be able to control the movement and density of the electric charge within them.
Many scientists are particularly interested in finding ways to increase the maximum density of charge in semiconductor devices. Doing so could lead to a major achievement in semiconductor research: inducing superconductivity in field-effect transistors (FETs) -- tiny semiconductor-based devices essential to integrated circuits (a single computer chip can contain millions). FETs could be vastly improved, eventually leading to better products for consumers.One key way to control charge density is by mixing in impurity atoms, a process called doping. Another way is using external electric fields. But in the latter method, problems arise with FET types that have insulating layers, such as the metal-oxide-semiconductor FET, or MOSFET (where the oxide layer is an insulator).Recently, researchers from Tohoku University in Sendai, Japan, and the Japan Science and Technology Agency demonstrated that it is possible to make an insulator superconduct within an FET structure. In the October 12 online edition of Nature Materials, the scientists describe their unusual FET structure, which incorporates an organic current-carrying material (an electrolyte) consisting of a polymer mixed with a salt.The basic structure is layered: a top platinum electrode, the electrolyte, and strontium titanate (SrTiO3), a mineral and strong insulator. Attached to the SrTiO3 surface are two gold islands that serve as electric leads and contacts. The total structure has a thickness of only a few hundred nanometers (billionths of a meter).

When a voltage is applied across the platinum layer and gold contacts using a battery, turning the structure "on," the effect is of a double-layer capacitor. The voltage splits the positive and negative ions in the electrolyte, sending negative charge to upward to the platinum surface and positive charge downward. This induces a very large negative "image" charge on the SrTiO3 surface, forming a conduction path between the two gold contacts. The electrolyte acts as a dielectric, an insulating material used between two capacitor plates to allow more charge to be stored before the capacitor breaks down.

Corresponding author Masashi Kawasaki, who is affiliated with both Tohoku University and the Japanese Science and Technology Agency, told PhysOrg.com, "The problem with past attempts to use electric fields to induce superconductivity in an insulator is there were no dielectric materials that could sustain a high enough field to build up the necessary charge in the insulator. So instead of the standard dielectric oxide, we've used a conducting polymer."

Using this method the researchers increased the SrTiO3 charge-carrier density from zero to approximately 10 trillion carriers per square centimeter. When cooled down to 0.4 K (about -460 degrees Fahrenheit), it becomes superconducting.

Kawasaki and his colleagues think their approach is a promising way to discover superconducting behavior in other unlikely materials.

"We do not need to worry about the complicated chemistry involved in mixing materials. All we need is a polymer and a battery. This way of making a superconductor may open a door to unexplored superconducting materials," said Kawasaki.

Citation: K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa and M. Kawasaki, Nature advance online publication 12 October 2008; doi:10.1038/nmat2298

0 Response to 'SUPERCONDUCTIVITY IN AN INSULATOR'

Post a Comment

    Science technology superconductors cameras