Meanwhile, researchers with Berkeley Lab and the University of California Berkeley will be studying an invisibility cloak of their own that also hides objects from view.
A team led by Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of UC Berkeley's Nano-scale Science and Engineering Center, has created a "carpet cloak" from nanostructured silicon that conceals the presence of objects placed under it from optical detection. While the carpet itself can still be seen, the bulge of the object underneath it disappears from view. Shining a beam of light on the bulge shows a reflection identical to that of a beam reflected from a flat surface, meaning the object itself has essentially been rendered invisible.
"We have come up with a new solution to the problem of invisibility based on the use of dielectric (nonconducting) materials," says Zhang. "Our optical cloak not only suggests that true invisibility materials are within reach, it also represents a major step towards transformation optics, opening the door to manipulating light at will for the creation of powerful new microscopes and faster computers."
Zhang and his team have published a paper on this research in the journal Nature Materials entitled: An Optical Cloak Made of Dielectrics. Co-authoring the paper with Zhang were Jason Valentine, Jensen Li, Thomas Zentgraf and Guy Bartal, all members of Zhang's research group.
Previous work by Zhang and his group with invisibility devices involved complex metamaterials - composites of metals and dielectrics whose extraordinary optical properties arise from their unique structure rather than their composition. They constructed one material out of an elaborate fishnet of alternating layers of silver and magnesium fluoride, and another out of silver nanowires grown inside porous aluminum oxide. With these metallic metamaterials, Zhang and his group demonstrated that light can be bent backwards, a property unprecedented in nature. While metallic metamaterials have been successfully used to achieve invisibility cloaking at microwave frequencies, until now cloaking at optical frequencies, a key step towards achieving actual invisibility, has not been successful because the metal elements absorb too much light.
0 Response to 'INVISIBILITY CLOAK'
Post a Comment