Liquid crystal lasers promise cheaper , higher color resolution laser televisions at home.
Researchers at the Centre of Molecular Materials for Photonics and Electronics (CMMPE) (part of the Department's Photonics Research Group at the University of Cambridge) are leading the way towards the development of extremely high colour resolution laser displays using liquid crystal laser technology.
Laser displays are new to the market, and are currently being developed by a number of electronics manufacturers. In a laser display, pixels of light emission are generated from three separate red, green and blue (RGB) laser sources. They therefore have a much narrower spectral linewidth compared to the relatively broadband RGB sources from other display technologies, including CRT, plasma, LCD and even the latest organic light-emitting diode (OLED) displays. When these three narrow linewidth red, green and blue sources are combined in a laser display, they offer unprecedented depths of colour resolution over competing display technologies.
Independent red, green and blue liquid crystal laser arrays.
The liquid crystal laser itself is based on a similar device architecture as a conventional liquid crystal display. Liquid crystals are fast becoming an alternative medium for use as the feedback structure for a wide variety of miniature laser devices. Certain liquid crystal phases, in particular the chiral nematic phase, spontaneously self-organize to form a helical structure with a periodic refractive index. When combined with a gain medium, such as a fluorescent dye, the chiral liquid crystal provides sufficient feedback to generate lasing within a device of thicknesses less than a human hair.
Simultaneous red, green and blue emitting liquid crystal laser array.
0 Response to 'CHEAPER HIGH RESOLUTION LASER TV'
Post a Comment